Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 202: 116373, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636343

RESUMEN

To develop an effective method to eliminate green macroalgae attached to Neopyropia aquaculture nets, we explored the influence of mixed acid solution on the photosynthetic fluorescence characteristics of Ulva spp. (green macroalgae) and Neopyropia yezoensis (red macroalgae) from Dafeng and Rudong aquaculture areas in Jiangsu Province, China. Treatment with mixed acid solution (0.0475 % hydrochloric acid:citric acid (pH 2.0) at a ratio of 4:3) for 60 s caused death of Ulva spp., but did not affect N. yezoensis. Additionally, a mixed acid solution effectively eliminated green macroalgae from Neopyropia aquaculture rafts and the marine environment remained unaffected. Hence, the application of mixed acid solution treatment has demonstrated significant efficacy in eradicating green macroalgae adhered to Neopyropia aquaculture rafts, thus presenting a promising strategy for mitigating green macroalgae proliferation in Neopyropia aquaculture areas and curbing their contribution to green tides.


Asunto(s)
Acuicultura , Algas Comestibles , Porphyra , Algas Marinas , Ulva , China , Chlorophyta
2.
Harmful Algae ; 133: 102588, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485443

RESUMEN

To investigate the detrimental impacts of cyanobacterial bloom, specifically Microcystis aeruginosa, on brackish water ecosystems, the study used Moina mongolica, a cladoceran species, as the test organism. In a chronic toxicology experiment, the survival and reproductive rates of M. mongolica were assessed under M. aeruginosa stress. It was observed that the survival rate of M. mongolica fed with M. aeruginosa significantly decreased with time and their reproduction rate dropped to zero, while the control group remained maintained stable and normal reproduction. To further explore the underlying molecular mechanisms of the effects of M. aeruginosa on M. mongolica, we conducted a transcriptomic analysis on newly hatched M. mongolica cultured under different food conditions for 24 h. The results revealed significant expression differences in 572 genes, with 233 genes significantly up-regulated and 339 genes significantly down-regulated. Functional analysis of these differentially expressed genes identified six categories of physiological functional changes, including nutrition and metabolism, oxidative phosphorylation, neuroimmunology, cuticle and molting, reproduction, and programmed cell death. Based on these findings, we outlined the basic mechanisms of microcystin toxicity. The discovery provides critical insights into the mechanisms of Microcystis toxicity on organisms and explores the response mechanisms of cladocerans under the stress of Microcystis.


Asunto(s)
Cladóceros , Microcystis , Animales , Microcystis/fisiología , Ecosistema , Perfilación de la Expresión Génica , Aguas Salinas
3.
Mar Pollut Bull ; 201: 116233, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38457878

RESUMEN

Green tides, a globally prevalent marine ecological anomaly observed in coastal regions, have received substantial attention. However, there is limited research on the burial of Ulva prolifera in sediments during the late stages of green tide outbreaks. This study investigates the effect of temperature on U. prolifera buried in sediment over 30 days. The measurements included the length, biomass, relative growth rate, chlorophyll composition and maximum quantum yield (Fv/Fm) of PS II at different stages. The results indicate that at -20 °C, numerous seedlings emerged after 14 days of recovery culture, suggesting the release of spores or gametes; survival was possible from -2 °C to 15 °C; but at 20 °C and 30 °C, all U. prolifera died. The U. prolifera buried in sediment during the late stage of green tide outbreaks may serve as one of the sources for the subsequent year's green tide eruption. This research provides insights into the origins of green tide outbreaks in the southern Yellow Sea.


Asunto(s)
Algas Comestibles , Eutrofización , Ulva , Temperatura , Biomasa , China
4.
Mar Pollut Bull ; 201: 116136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382319

RESUMEN

Planktonic bacteria play a crucial role in sustaining the ecological balance of aquatic ecosystems. However, their seasonal variations in different aquaculture areas within the East China Sea, along with their correlation to environmental factors, have not been extensively explored. In this study, each area with 3 sample points were set up to represent the fish aquaculture area, shellfish aquaculture area and non-aquaculture area. In 2019, we undertook four marine surveys along the Xiasanhengshan uninhabited island, during which we gathered surface seawater samples for both physicochemical analysis and high-throughput sequencing. This allowed us to obtain data about the physicochemical properties and microbial composition in each surveyed region. A short-term eutrophication phenomenon was present in the sea, and the spatial and temporal distribution of planktonic bacteria differed based on the mariculture area. At the phylum level, Proteobacteria accounted for >50 % of the community abundance in winter, spring, and autumn, while Cyanobacteria accounted for >30 % of the community abundance in summer. Because Cyanobacteria blooms are likely in summer, the relationship between Cyanobacteria and environmental factors was studied. Redundancy analysis showed that Cyanobacteria were consistently positively correlated with phosphate. Eutrophication and abnormal proliferation of Cyanobacteria in the study area necessitate ameliorations in the mariculture structure. The variation of genus in Proteobacteria is consistent with that of eutrophication, so some genera in Proteobacteria have the potential to become biological indicator species.


Asunto(s)
Cianobacterias , Ecosistema , Animales , Plancton , Agua de Mar/microbiología , Proteobacteria , China
5.
Chem Biodivers ; 21(2): e202300926, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38230763

RESUMEN

Okadaic Acid, a type of diarrhetic shellfish poison, is widely distributed and harmful, causing symptoms such as diarrhea, vomiting, and more in humans. Recent studies have demonstrated that OA can lead to various toxicities such as cytotoxicity, neurotoxicity, embryotoxicity, and hepatotoxicity. In order to investigate the immunotoxicity of OA on intestinal cells, a transcriptome analysis was conducted to compare the differences in the Caco-2 cell transcriptional group before and after administration. The CCK-8 experiment demonstrated that OA had a detrimental effect on the activity of Caco-2 cells, with an IC50 value of 33.98 nM. Transcriptome data revealed changes in immune-related genes between the experimental and control groups, including inflammatory factors, heat shock proteins, and zinc finger proteins. The analysis of the results suggests that OA can induce the production of inflammatory factors and apoptosis in cells, and may also affect cell ferroptosis. These findings indicate that OA has a significant impact on intestinal immunity, providing valuable insights for the study of immune toxicity associated with OA.


Asunto(s)
Apoptosis , Intestinos , Humanos , Ácido Ocadaico/toxicidad , Células CACO-2 , Perfilación de la Expresión Génica
6.
Sci Total Environ ; 912: 169022, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043827

RESUMEN

Green tides, characterized by excessive Ulva prolifera blooms, pose significant ecological and economic challenges, especially in the South Yellow Sea. We successfully employed 18S environmental DNA (eDNA) metabarcoding to detect Ulva prolifera micropropagules, confirming the technique's reliability and introducing a rapid green tide monitoring method. Our investigation revealed notable disparities in the eukaryotic microbial community composition within Ulva prolifera habitats across different regions. Particularly, during the early stages of the South Yellow Sea green tide outbreak, potential interactions emerged between Ulva prolifera micropropagules and certain previously undocumented microorganisms from neighboring waters. These findings enhance our comprehension of early-stage green tide ecosystem dynamics, underscoring the value of merging advanced molecular techniques with conventional ecological methods to gain a comprehensive understanding of the impact of green tide on the local ecosystem. Overall, our study advances our understanding of green tide dynamics, offering novel avenues for control, ecological restoration, and essential scientific support for sustainable marine conservation and management.


Asunto(s)
ADN Ambiental , Algas Comestibles , Ulva , Ecosistema , Reproducibilidad de los Resultados , Eutrofización , China
7.
Mar Pollut Bull ; 199: 115944, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142666

RESUMEN

Golden tide outbreak threatened the marine ecological environment. Sargassum horneri is a single dominant species of the Yellow Sea golden tide, which growth and development are affected by changes in sea water temperature. This study investigated the photosynthetic physiology of copper algae and found that the growth rate, chlorophyll a content, carotenoid content, Fv/Fm, and maximum electron transfer efficiency were significantly reduced, indicating that Sargassum horneri was under stress under high temperature. In this study, high-throughput sequencing was used to analyze the response mechanisms of photosynthesis-related genes in S. horneri under high temperature stress. The results showed that most of the photosynthesis-related genes in S. horneri were downregulated and photosynthesis was inhibited under high temperature stress. However, the expression levels of ferredoxin, ferredoxin-NADP reductase, light-harvesting protein complexes, and oxygen-evolving complex genes were significantly upregulated (P ≤ 0.05) after five days of high temperature treatment. This study found that photosynthesis related genes play a crucial role in regulating the photosynthetic response of S. horneri to high temperature stress.


Asunto(s)
Sargassum , Temperatura , Clorofila A , Fotosíntesis , Agua de Mar
8.
Environ Monit Assess ; 195(12): 1537, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010577

RESUMEN

Understanding the spatial expansion process of salt marshes and quantifying the factors driving this expansion are crucial for the management and restoration of coastal wetlands. In this study, we aimed to illustrate the expansion process of Scirpus mariqueter using drone remote sensing and quantify its relationship with habitat quality. Our hypothesis was that landscape metrics could serve as valuable indicators for prioritizing habitat restoration efforts along the coast. We utilized drone remote sensing and adopted the simple Greenness Index to reflect the growth status of S. mariqueter. Using this index, we computed the standard deviation ellipse and growth center. To evaluate habitat quality, we developed a method based on our previous research and other relevant reports. We then conducted a quantitative analysis of the expansion process of S. mariqueter in areas with varying habitat quality. We found that S. mariqueter's optimal elevation was 3.7 m, with a range of 2.5 to 4.3 m. The threshold value for soil total nitrogen was 0.3 g/kg, and the tolerance threshold for soil salinity was 2500 ppm. These three factors, elevation, soil total nitrogen, and soil salinity, collectively influenced habitat quality, with weights of 0.68, 0.23, and 0.09, respectively, as determined through geodetector analysis. During the summer, we observed a dominance of dispersal in S. mariqueter, with the species primarily spreading to areas with increased habitat quality. Patch shapes tended to be compact and regular in this season. In contrast, during the autumn, a dominance of decline was observed, with S. mariqueter mainly distributing to areas exhibiting decreased habitat quality. Patch shapes tended to be complex and irregular in the autumn season. Eventually micro-geomorphic modification and patch shape filling methods based on UAV observations are proposed to aid wetland restoration. These findings are of utmost importance for the restoration of coastal wetlands and the enhancement of ecosystem resilience.


Asunto(s)
Cyperaceae , Humedales , Ecosistema , Dispositivos Aéreos No Tripulados , Monitoreo del Ambiente , Suelo , Nitrógeno/análisis
9.
Proteome Sci ; 21(1): 17, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828502

RESUMEN

µ-Conotoxin GIIIB (µ-CTX GIIIB) is a polypeptide containing three disulfide bridges, produced by the sea snail Conus geographus. This study was aimed to explored the cytotoxic effects of µ-CTX GIIIB on mouse skeletal musculoblast (Sol8). Sol8 cells were exposed to ouabain and veratridine to establish the cell injury model, and then treated with µ-CTX GIIIB. CCK-8 was adopted to evaluate the cytotoxicity of µ-CTX GIIIB. Then, proteomics and transcriptome were conducted, and the explore the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) affected by µ-CTX GIIIB were found. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to investigate the affected signaling pathways. µ-CTX GIIIB increased the cell survival rate of injured Sol8 cells. We found and identified 1,663 DEGs and 444 DEPs influenced by µ-CTX GIIIB. 106 pairs of correlated DEGs and DEPs were selected by combining transcriptome and proteome data. The results of KEGG and GO analysis showed that µ-CTX GIIB affected the cell cycle, apoptosis, DNA damage and repair, lipid metabolism and other biological processes of Sol8 cells. µ-CTX GIIIB could affected cell cycle regulation, DNA damage repair, and activation of tumor factors, with potential carcinogenic effects. Our results provide an important basis for the study of in vitro toxicity, the mechanism of toxicity and injury prevention by µ-CTX GIIIB.

10.
Mar Pollut Bull ; 194(Pt B): 115357, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37579597

RESUMEN

Since 2007, green tides have occurred almost every year in the Yellow Sea, and a method to prevent them and to control levels of attached Ulva prolifera is urgently needed. In this study, we measured the effects of different concentrations of citric acid-activated chlorine dioxide solution (0, 50, 100, 150, 200, and 250 mg/L of chlorine dioxide) on the morphology (macrostructure and microstructure), chlorophyll a content, chlorophyll b content, carotenoid content, and chlorophyll fluorescence parameters (Fv/Fm, Y (II), NPQ, and ETRmax) of U. prolifera. Micropropagules in the treatment filtrate were cultured to determine whether the solution reduced the number of micropropagules released during the treatment process. The results showed that citric acid-activated chlorine dioxide at the appropriate concentration can be applied to remove U. prolifera from Neopyropia cultivation rafts. Because U. prolifera and its micropropagules died in the 250 mg/L chlorine dioxide group, we recommend that the appropriate concentration of chlorine dioxide for removing green macroalgae is ≥250 mg/L. Our results provide a scientific basis for convenient collection of accurate data for the U. prolifera prevention trial organized by the Ministry of Natural Resources of the People's Republic of China.


Asunto(s)
Compuestos de Cloro , Ulva , Humanos , Clorofila A , Óxidos , China , Eutrofización
11.
Front Plant Sci ; 14: 1203089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434603

RESUMEN

Introduction: Suaeda salsa (Linn.) Pall. is an important tourist resource and ecological restoration species in coastal wetlands. Environmental factors such as low temperature, darkness, phytohormone, salt stress and seawater flflooding, and light can induce betalain synthesis in S. salsa, which plays an important role in plant adaptation to abiotic stress processes and in shaping the beautiful "red beach" landscape. Methods: In this study, Illumina sequencing was used to profifile the transcriptome sequence (RNA-Seq) of S. salsa leaves at different temperatures (5° C, 10°C, 15°C, 20°C, 25°C, and 30°C) and to validate differentially expressed genes (DEGs) indicated by real-time PCR (RT-qPCR). Results: The betacyanin content was highest in S. salsa leaves at 15°C. Transcription group data showed that compared to the control group (15°C), the "betacyanin biosynthesis pathway" was signifificantly enriched in the fifive different temperature groups. KEGG analysis showed that the DEGs were mainly involved in pathways of phenylpropanoid biosynthesis, carbon fifixation in photosynthetic organisms, flflavonoid biosynthesis, and betacyanin biosynthesis. Among the key enzymes involved in biosynthesis of betacyanin, genes for tyrosinase, CYP76AD1 and 4,5-DOPA dioxygenase were signifificantly upregulated and most abundantly expressed at 15°C. It is possible that the gene for betacyanin synthesis from S. salsa is primarily regulated by the MYB1R1 and MYB1 transcription factor. Four DEGs were randomly selected for quantitative PCR analysis, and DEG expression was generally consistent with the RNA-Seq data, verifying the validity of the transcriptome sequencing data. Discussion: Relative to other temperatures, 15°C was optimum for S. salsa betacyanin synthesis, and this provides a theoretical reference for coastal wetland ecological remediation, reveals mechanisms of S. salsa discoloration, and further mines its potential application for landscape vegetation.

12.
Environ Pollut ; 332: 121969, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37301456

RESUMEN

Green tides have been reported to occur in many sea areas worldwide. In China, most of them are caused by Ulva spp., such as Ulva prolifera and Ulva meridionalis. Green tide algae shed are frequently the initial biomass for the formation of green tide. Human activities and seawater eutrophication are the fundamental causes of the formation of the green tides in the Bohai Sea, Yellow Sea, and South China Sea, but other environmental factors may also have an impact on the shedding of green tide algae, such as typhoons and currents. Algae shedding is divided into artificial shedding and natural shedding. However, few studies have explored the relationship between algal natural shedding and environmental factors. pH, sea surface temperature, and salinity are critical environmental factors affecting the physiological state of algae. Therefore, based on field observations of the shedding of attached green macroalgae in Binhai Harbor, this study assessed the correlation between the shedding rate and environmental factors (pH, sea surface temperature, and salinity). The green algae that shed from Binhai Harbor in August 2022 were all identified as U. meridionalis. The shedding rate range was 0.88% ± 0.11% d-1 to 4.78% ± 1.76% d-1, and was not correlated with pH, sea surface temperature, or salinity; however, the environmental conditions were very suitable for the proliferation of U. meridionalis. This study provided a reference for the shedding mechanism of green tide algae and revealed that with the frequent human activities along the coast, U. meridionalis may pose a new ecological risk in the Yellow Sea.


Asunto(s)
Chlorophyta , Algas Marinas , Ulva , Humanos , Ulva/fisiología , Agua de Mar , Eutrofización , China
13.
Plants (Basel) ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176865

RESUMEN

The utilization of allelochemicals to inhibit algal overgrowth is a promising approach for controlling harmful algal blooms (HABs). Quercetin has been found to have an allelopathic effect on algae. However, its responsive mechanism needs to be better understood. In the present study, the inhibitory effects of different quercetin concentrations on M. aeruginosa were evaluated, and the inhibition mechanisms were explored. The results demonstrated that quercetin significantly inhibited M. aeruginosa growth, and the inhibitory effect was concentration-dependent. The inhibition rate of 40 mg L-1 quercetin on algal density reached 90.79% after 96 h treatment. The concentration of chlorophyll-a (chl-a) in treatment groups with quercetin concentrations of 10, 20, and 40 mg L-1 decreased by 59.74%, 74.77%, and 80.66% at 96 h, respectively. Furthermore, quercetin affects photosynthesis and damages the cell membrane, respiratory system, and enzyme system. All photosynthetic fluorescence parameters, including the maximum photochemical quantum yield (Fv/Fm), the actual photochemical quantum yield (YII), the maximum relative electron transfer rate (rETRmax), and light use efficiency (α), exhibited a downtrend after exposure. After treatment with 20 mg L-1 quercetin, the nucleic acid and protein content in the algal solution increased, and the respiration rate of algae decreased significantly. Additionally, superoxide dismutase (SOD) activities significantly increased as a response to oxidative stress. In comparison, the activities of ribulose 1,5-biphosphate carboxylase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) decreased significantly. These results revealed that quercetin could inhibit M. aeruginosa by affecting its photosynthesis, respiration, cell membrane, and enzymic system. These results are promising for controlling M. aeruginosa effectively.

14.
Mar Pollut Bull ; 191: 114974, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37116250

RESUMEN

Due to ever-increasing global warming, ocean acidification, and inshore eutrophication, the outbreak of golden tides with Sargassum horneri has increased in the Yellow sea, where the biomass carbon enters three main carbon pathways: a. Removal of carbon from seawater by salvage, known as removable carbon; b. Biomass carbon is deposited to the seafloor through POC and RDOC through Biological Carbon Pump and Microbial Carbon Pump; c. Re-entering the carbon cycle through the food chain or re-entering the atmosphere through the action of microbes. Estimating carbon fixation (removable carbon) and storage (particulate organic carbon (POC) and refractory dissolved organic carbon (RDOC)) is vital in studying the global carbon cycle. In this research, it was observed that the C content of S. horneri was high, and the utilization rate of dissolved organic carbon (DOC), RDOC, and POC was also high in the eutrophication environment, where only 2.71 % of algal biomass carbon was converted to RDOC, and only 0.20 % converted to POC. The C + N + P combination has a restart effect on the seasonal accumulation of RDOC in relevant sea areas. It is suggested that the salvage and resource utilization should be strengthened to effectively control the golden tide and reduce the substantial economic losses to realize the win-win situation of carbon sink and environmental restoration.


Asunto(s)
Carbono , Agua de Mar , Materia Orgánica Disuelta , Concentración de Iones de Hidrógeno , Biomasa
15.
Harmful Algae ; 123: 102402, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894208

RESUMEN

The response of seaweeds to environmental stressors can be population-specific, and be related to the regime of their habitats. To explore the growth and physiological responses of Ulva prolifera, two strains of this alga (Korean and Chinese strains) were studied under an interaction of temperature (20 and 25 °C), nutrients (low nutrients: 50 µM of nitrate and 5 µM of phosphate; high nutrients: 500 µM of nitrate and 50 µM of phosphate) and salinity (20, 30 and 40 psu). The lowest growth rates of both strains were observed at 40 psu of salinity, independent of temperature and nutrient levels. At 20 °C and low nutrients condition, the carbon: nitrogen (C: N) ratio and growth rate in the Chinese strain were increased by 31.1% and 21.1% at a salinity of 20 psu in comparison to the salinity of 30 psu, respectively. High nutrients decreased the ratio of C:N in both strains with increasing tissue N content. At the same time, high nutrients also increased soluble protein and pigments contents, as well as photosynthetic and growth rates in both strains at the same salinity levels at 20 °C. Under 20 °C and high nutrients conditions, the growth rates and C:N ratio of both strains were significantly decreased with increasing salinity. The pigment, soluble protein and tissue N showed an inverse trend with the growth rate at all conditions. Moreover, the higher temperature of 25 °C inhibited the growth in both strains regardless of nutrients levels. The temperature of 25 °C enhanced the contents of tissue N and pigments in the Chinese strain only at the low nutrients level. The interaction of high nutrients and 25 °C led to the accumulation of tissue N and pigment contents in both strains under all salinity conditions compared to the 20 °C and high nutrients level. The temperature of 25 °C and high nutrients decreased the growth rate in the Chinese strain at both salinities of 30 and 40 psu more than the 20 °C, and low nutrients level at the same salinity. These results suggest that the Ulva blooms caused by the Chinese strain were more impacted at hypo-salinity levels compared to the Korean strain. Eutrophic or high nutrients level enhanced the salinity tolerance in both strains of U. prolifera. There will be a decline of U. prolifera blooms of the Chinese strain at hyper-salinity levels.


Asunto(s)
Ulva , Temperatura , Ulva/fisiología , Tolerancia a la Sal , Nitratos/metabolismo , Nutrientes , Fosfatos/metabolismo
16.
Mol Biotechnol ; 65(11): 1729-1736, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36881252

RESUMEN

Gene editing technology is regarded as a good news to save patients with genetic diseases because of its significant function of specifically changing genetic information. From zinc-finger proteins to transcription activator-like effector protein nucleases gene editing tools are constantly updated. At the same time, scientists are constantly developing a variety of new gene editing therapy strategies, in order to promote gene editing therapy from various aspects and realize the maturity of the technology as soon as possible. In 2016, CRISPR-Cas9-mediated CAR-T therapy was the first to enter the clinical trial stage, indicating that the use of CRISPR-Cas system as the blade of the genetic lancet to save patients is officially on the schedule. The first challenge to achieve this exciting goal is to improve the security of the technology. This review will introduce the gene security issues faced by the CRISPR system as a clinical treatment tool, the current safer delivery methods and the newly developed CRISPR editing tools with higher precision. Many reviews summarize the means of improving the security of gene editing therapy and the comprehensive delivery method, while few articles focus on the threat of gene editing to the genomic security of the treatment target. Therefore, this review focuses on the risks brought by gene editing therapy to the patient genome, which provides a broader perspective for exploring and improving the security of gene editing therapy from two aspects of delivery system and CRISPR editing tools.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Terapia Genética , Genoma
17.
Food Res Int ; 165: 112559, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869543

RESUMEN

Seaweeds (green algae, red algae and brown algae) are rich in nutrients, and incorporating algae into the human diet can provide important health benefits. However, consumer acceptance of food is closely related to its flavor, and in this respect, volatile compounds are key factors. This article reviews the extraction methods and composition of volatile compounds from Ulva prolifera, Ulva lactuca, Sargassum spp. and economically valuable cultured seaweeds such as Undaria pinnatifida, Laminaria japonica, Neopyropia haitanensis and Neopyropia yezoensis. Research found that the volatile compounds of the above seaweeds were composed mainly of aldehydes, ketones, alcohols, hydrocarbons, esters, acids, sulfur compounds, furans and small amounts of other compounds. Volatile compounds such as benzaldehyde, 2-octenal, octanal, ß-ionone and 8-heptadecene have been identified in several macroalgae. This review argues that more research on the volatile flavor compounds of edible macroalgae is required. Such research could aid new product development or widen applications of these seaweeds in the food or beverage sectors.


Asunto(s)
Productos Biológicos , Algas Marinas , Humanos , Alimentos , Bebidas , Ésteres
18.
Mar Pollut Bull ; 188: 114710, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36860024

RESUMEN

The green tide event that occurred in the Southern Yellow Sea in 2007 lasted for 16 years, causing serious economic losses and ecological damage to coastal cities. To address this problem, a series of studies were conducted. However, the contribution of micropropagules to green tide outbreaks remains poorly understood, and the relationship between micropropagules and green algae that are settled nearshore or floating at sea also needs to be further explored. The present study focuses on the identification of these micropropagules in the Southern Yellow Sea and uses the Citespace tool to quantitatively analyze current research hotspots, frontier trends, and development trends. In addition, it examines the micropropagules' life cycle and how it directly affects the green algal biomass and clarifies the temporal and spatial distribution of micropropagules in the entire Southern Yellow Sea. The study also discusses unresolved scientific problems and limitations in the current research on algal micropropagules and provides an outlook on future research directions. We expect to further analyze the contribution of micropropagules to green tide outbreaks and provide data to support comprehensive green tide management.


Asunto(s)
Brotes de Enfermedades , Biomasa , Ciudades
19.
Mar Environ Res ; 186: 105942, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36924535

RESUMEN

Large numbers of Amphipoda feed on floating green tide macroalgae in the Yellow Sea, among which Ampithoe valida has a high abundance in the stable and decline periods. Amphipoda preferentially feed on Ulva. Under different temperatures, salinities, and pH, the physiological responses of A. valida and its feeding potential on Ulva prolifera were investigated, along with its physiological responses during green tide blooms in the Southern Yellow Sea. Ampithoe valida could survive within a temperature range of 5-30 °C, salinity of 5-40, and pH of 4-10. Optimal environmental conditions for growth were temperature 15-25 °C, salinity 10-40, and pH 6-10. At temperatures of 5-30 °C, salinities of 5-35, and pH of 4-9, A. valida could effectively reduce U. prolifera biomass. The feeding ability of A. valida was greatest in 25-30 °C, 10-25 salinity, and neutral seawater, exceeding 5 mg·ind.-1·d-1. During green tide outbreaks in the Southern Yellow Sea from May to August, the monthly average sea surface temperature, salinity, and pH range is 17.5-27.3 °C, 23.8-29.6, and 7.87-8.17, respectively, within which A. valida showed well growth and could effectively reduce U. prolifera biomass. Finally, this study further discussed the possibility of A. valida as a biological method to control green tide.


Asunto(s)
Anfípodos , Ulva , Animales , Agua de Mar , Biomasa , Temperatura , China , Eutrofización
20.
Fish Shellfish Immunol ; 132: 108471, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509413

RESUMEN

This study aimed to evaluate antioxidant capacity and protection from white spot syndrome virus (WSSV) challenge of Procambarus clarkii fed trans-vp19 and trans-vp (19 + 28) genes of Synechococcus sp. PCC7942 (Syn7942). P. clarkii were fed transgenic cyanobacteria continuously for 7 days, and then infected with WSSV after 12 h starvation. The daily mortality in each group was measured for 10 days and hepatopancreas and muscle of P. clarkii were examined for enzymes phenoloxidase (PO) activity, catalase (CAT) activity, glutathione peroxidase (GSH-px) activity, and malondialdehyde (MDA) concentration after immunization and viral challenge at different times. Compared with the WSSV-infected crayfish in positive control group (challenge and no vaccination) and wild type group (challenge, feeding wild-type Syn7942), vp19 group (challenge, feeding Syn7942 trans-vp19 gene) and vp (19 + 28) group [challenge, feeding Syn7942 trans-vp (19 + 28) genes] significantly improved the survival rate from 0% to 60% and 56.7%, respectively. Consistently, significantly greater PO, CAT, and GSH-px activity and significantly lower MDA concentration in the vp19 and vp (19 + 28) groups compared to the control group. These results demonstrate that the trans-vp19 and trans-vp (19 + 28) gene of Syn7942 significantly facilitated the immune and antioxidant capacity of crayfish. Therefore, the trans-vp19 and trans-vp (19 + 28) genes of Syn7942 could provide protection for crayfish as an anti-WSSV oral medication.


Asunto(s)
Synechococcus , Virus del Síndrome de la Mancha Blanca 1 , Animales , Antioxidantes , Astacoidea , Virus del Síndrome de la Mancha Blanca 1/fisiología , Synechococcus/genética , Administración Oral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...